booz&co.

Alternative Powertrains and Challenges for Next Decade

SIAM Annual General Meeting

Insights from the Indian Hybrid / Electric Mobility Study

When the automobile was introduced in late 1800's, it was not readily apparent which engine technology would prevail

Steam vs. Electric vs. Internal Combustion

Steam Car (Nicolas Joseph Cugnot 1769)

Electric Car (Robert Anderson, 1839)

Gasoline-Powered Car (Carl Benz, 1886)

At the end of 19th century, electrics outsold all other types of cars

ICE prevailed over other technologies dues to its virtues speed, power, and range – courtesy of petroleum's high energy density

Competitive Advantages By Powertrain

Criteria	Electric	Steam	ICE
Clean, free of smoke/odor	√	X	X
Quiet	✓	✓	X
Reliable, durable	√	X	✓
Simple, easy to maintain	✓	X	X
Easy to drive and control	✓	X	✓
Free of vibration	✓	√	X
Instant starting	✓	X	✓
Speed	X	✓	✓
Acceleration	✓	✓	✓
Power	X	✓	✓
Range, distance	X	X	✓
Infrastructure	X	X	✓

Energy Density Of Petroleum Vs. Other Fuels

Is the future going to be different?

Note: ICE = Internal Combustion Engine

Source: ANL, DOE, Sion, NRC, Booz & Company analysis

There are at least five drivers that may shift the balance in favor of alternative fuels and powertrains

Disruptive Forces And Regulatory Imperatives

production

cars

gasoline and diesel for

European passenger

political forces

Hybrid

Electric Vehicle

Comfort

"Glocalization": Global **Products Adapted to Local** Requirements

Hydrogen Fuel Cell xEVs - Covered in detail **Vehicles**

Honda FCX Clarity

Significant fuel efficiency gains are expected through innovations in ICE technologies by 2020

Technology Roadmap – Automotive Powertrains

Key Technology Milestones

	2010	2015	2020	Expected Fuel Efficiency Improvements by 2020
	Increases perAllows engine engines, while	nsizing Optimization formance with smaller but highe s in the 0.8-1.4 L class to perfor allowing for significantly improve tion and Dual Clutch Technology	rm equivalent to much larger ved fuel economy	10 – 15%
ICE	chamber leadii The dual clutch	ection, high pressure fuel is injecting to more efficient fuel utilization allows seamless shifting between gears increasing efficiency	n	12 – 20%
	Airflow manage	Iling Resistance Optimization gement and optimization impacts or aerodynamic modifications Weight Reduction		0.5 – 5%
	parts with light • Every 10% of	ain on the engine by replacing a weight materials weight reduced from the averag mption by 5-10%		5 – 10%

Source: Argonne National Laboratory, Automotive OEM press releases, Booz Allen Hamilton Technology Center, Booz & Company

Biofuel and CNG are gaining momentum due to favorable economics and small modifications required for ICE vehicles

Transport Energy Consumption for Biofuels¹

Transport Energy Consumption for CNG^{1,2} (2010, 2020F) **Share**

- Includes negligible share of LPG as well

Trends

- Second generation (not based on edible crops) biofuels are beginning to reach commercial stage
- Prices of cellulosic bio-fuel is expected to come down from ~0.9 \$/I to ~0.5 \$/I by 2020 making it cheaper than first generation biofuels
- Favorable economics of CNG based vehicles have driven their demand in Pakistan, Argentina, Brazil, Iran and India (~8.2M CNG vehicles in 2009)

Challenges

- Distribution of ethanol is difficult as it is more corrosive than gasoline
- Modification of vehicles is required to make them compatible with high blend of ethanol
- Bio-diesels can be unstable, have poor cold weather performance and have variable quality
- CNG vehicles can be more expensive than ICEs vehicles, have lower engine efficiency and range

xEVs are becoming popular as they provide higher fuel efficiency by using electric motor to supplement/replace engine power

Comparison between Different Powertrain Technologies

Internal Combustion **Engine (ICE)**

Hvbrid Electric Vehicle (HEV)

Plug-In Hybrid **Electric Vehicle** (PHEV)

Extended Range Electric Vehicles (ER-EV)

Electric Vehicle (EV)

Car Model

Honda Civic

Petrol usage:

Toyota Prius

Petrol usage:

Ford Escape

Volt

Chevrolet

Tesla Roadster

Powered entirely by petrol, diesel, CNG or biofuels, other than a battery for starting

Engine powers car is required

Petrol usage: Petrol generator when additional power recharges battery when charge is low

Petrol usage: Petrol generator recharges battery when charge is low

Petrol usage: None

Technology

Electricity usage: None

Electricity usage: Generated by regenerative braking, supplements engine power

5 - 40% 1

Electricity usage:

Battery with mains runs the vehicle alone or to supplement

Electricity usage: Battery with mains or generator charge runs the vehicle alone

Electricity usage:

Runs entirely on

electricity from mains charge

Fuel Efficiency savings

0%

5 - 50% ¹

35 - 60% ¹

100%

Electrification

Petrol / Diesel

Electricity

Depends on xEV battery size Source: Official car websites, Booz & Company analysis

Unless several technical challenges are not solved, fuel cell powertrains will trail behind cost of ICE and EV technologies

Technology Roadmap – Fuel Cell Powertrains

Key Technology Milestones 2010 2015 2020 2025 3,500 **Longevity Improvement** H₂ Storage Cost Reduction Gravity dependence! Lower cost carbon fiber tanks 3.000 Improved operating hour life Higher compression storage, thus close to 5000 hr ICE standard greater range 2.500 **Cold Start Improvement** Membranes with higher tolerance of moisture extremes (wet or 2.000 Extended system lifetime Fuel Cell Stack Cost Reductions (Pt Reduction, catalyst) **Fuel Cell** Improved current density through material advances creates more power per fuel cell stack, thus reducing the total number of stacks and requisite platinum catalyst Nanoscale catalyst development and non-platinum catalysts Significantly reduced system cost 500 H₂ Fueling Infrastructure Build out of hydrogen fueling stations and distribution networks (or decentral production) Build out of major hydrogen manufacturing plants (renewable based or hydrocarbon)

(in €/kWh ~100 kW powertrain)

Source: US Department of Energy, Booz Allen Hamilton Technology Center, Booz & Company

While OEMs are currently researching different powertrain technologies, they are getting more active on electric mobility

OEM Development Activities on Various Powertrains

¹ FCV = Fuel Cell Vehicle Source: OEM Interviews, literature search, Booz & Company analysis

^{1 =} Not active/little information 3 = Very active

^{2 =} Somewhat active

Among electric mobility solutions, OEMs are focusing on development of full hybrids and full battery electric vehicles

Number of Electric Models Launched

By Technology, 2009-2013

Main Models BMW ActiveHybrid 5 Series

25

10

- Chery A5 Mild Hybrid
- Mercury Milan Hybrid
- Toyota Prius III
- Ford Fusion Hybrid
- Mercedes E400 Hybrid
- Toyota Prius Plug-in Hybrid
- Chevrolet Volt
- Mercedes S500 Plug-in-Hybrid
- Nissan Leaf
- Renault Fluence Z.E.
- Ford Focus BEV.

Source: Just-Auto, Booz & Company

Mild Hybrids

Full Hybrids

Plug-in

Hybrids

Battery

Electric

Number of Electric Models Launched

By Technology and Segment 2009-2013

Type of Vehicle	Mild Hybrids	Full Hybrids	Plug-in Hybrids	Battery Electric
A & B – "Mini & Small"		3		13
C - "Middle"	2	3	3	7
D – "Large"	1	5	2	1
E&F "Luxury & Sport"	2	6	3	4
SUV		6	1	1
MPV		1		2
LCV	1	1		
Total	6	25	10	29

The road to the new automotive world order will be challenging and will require significant transitions from today's status quo

Key Challenges

Capabilities

- How can OEMs build up the new structures and capabilities required to develop alternative powertrain vehicles?
- Who should the OEMs partner with in order to build and improve these capabilities?

Suppliers

- Where and how do OEMs find the suppliers for new technologies? How will these relationships be different from relationships with current suppliers?
- How can the supply chain be aligned to meet the needs of the new supplier landscape?
- How will infrastructure supply (e.g. electric charging stations) be built up?

Change Management

What changes are in store for the current manufacturing structure and how can they be managed most effectively? Engineering? Sales & Marketing?

Solutions for the "mobility revolution" require a new "ecosystem" of collaborative partnerships

3 Dimensions of the New Eco-system

Regulatory Innovation Frontier (Government)

 New policies (including subsidy policy) to support the commercialization of green transportation technologies

Technical Innovation Frontier (Auto Industry)

 Partnerships among key players to deliver deep, scalable solutions for future green transportation

Business Innovation Frontier (Cross Industry/Value Chain)

 Partnerships between other industries and auto makers/suppliers to develop new business model for future green cars

For EVs, there will be changes in OEM manufacturing footprint, and new suppliers will play a role in the powertrain value chain

Dynamic Changes for OEMs and Suppliers

New Supplier Segmentation in the EV Powertrain Value Chain

- OEMs' assets previously bound in ICE manufacturing facilities will be diversified
- 2. New suppliers that do not have a role in the past will come into play

Source: Interviews, Booz & Company analysis

Booz & Company

In addition, the development of EV industry requires partnership across the value chain

Key Stakeholders of the EV Industry

Collaborative partnerships with emerging players will ultimately drive the green revolution

Source: Booz & Company analysis

Globally, economies have been pushing the xEV agenda by leveraging different policy levers

E-Mobility Models: Comparison of Select Countries

Lever	US	China	Japan	France
R&D	///	///	✓✓	√√
Supply Side	√ √	√√√	✓	✓
Demand-side Incentives	///	✓	√√	///
Infrastructure	√ √	///	√√	///
HEV / PHEV / BEV Incentives	 Incentives for HEVs phased out Incentives for PHEVs and BEVs based on battery size 	 Incentives in form of subsidy and exemption from road and annual tax Maximum for BEVs followed by PHEVs and HEVs 	 Equal incentives for all xEV technologies 	 Incentives for HEVs <50% compared to PHEVs / BEVs
Proposed Investment	>\$5 B	> \$20 B	>\$1.7 B	>3.5 B

Note: Japan's investment is from 1998-2014 Source: Literature Research, Booz & Company analysis

Booz & Company 16

Comparing with mature markets, China stands out as a significant opportunity and seems more ready to introduce EV

Key Forces in China

- Chinese government is driven by greater environmental pressure and energy consumption
- The government started stronger incentives to promote cleaner technologies in automobile industry
- China's automobile industry has lagged behind foreign OEMs in the ICE era
- Emergence of EV provides great opportunity for China to catch up

- achieve low cost production
- Established battery manufacturers with large-scale capacity; supply lithium battery to cell phone/laptop industry

- Passenger ownership per capita in China suggest a very low penetration of vehicles
- Consumer habit in China is still in the forming process due to relatively short driving history
- Thus consumer acceptance to EV is comparatively high than mature markets (e.g. US with approx. 20-year driving history)
- Meanwhile, the switch cost is expected to be low

Readiness for EV

China

Source: Booz & Company analysis

Booz & Company 17 Alternative Powertrains: Global Developments and Challenges

Insights from the Indian Hybrid / Electric Mobility Study

The total potential for xEVs in India could be 5 – 7 M units in new vehicle sales by 2020, based on extensive research and analysis

Inputs Used to Develop xEV Potential for India

Potential for xEVs - 2020

Vehicle / Technology Segment	Potential for xEVs (M Units)
BEV 2W	3.5 – 5
HEV Vehicles (4W, Bus, LCV)	1.3 – 1.5
Other BEV Vehicles (3W, 4W, Bus, LCV)	0.2 – 0.5
Total	5 – 7

Source: Booz & Company analysis

About 2 - 2.5 MT of liquid fuel savings are expected to accrue from 2W, 4W, LCVs, buses and 3W; with highest contribution from 2W

Potential xEV Vehicle Sales and Liquid Fuel Savings

	2W	4W	Bus	LCV	3W	
Vehicle Sales in 2020 ('000 Units)						
HEV / PHEV	-	1,275	2	120	- (Total vehicles:
BEV	4,800	170-320	0.3-0.7	30-50	20-30	
Fuel Savings due to xEVs (Million Tonnes of Liquid Fuel)						
Fuel Savings	1.4	0.4 – 0.65	0.16 – 0.19	0.09 – 0.16	0.06 – 0.09	Total oil savings: 2.2 – 2.5 MT

Note: Liquid fuel = petrol / diesel

Source: Industry Interviews, SIAM, Booz & Company analysis

To realize this potential, the Government and the Industry need to support a clear roadmap...

...which will require Government interventions

Key Policy Levers for Driving xEV Demand

Fuel Efficiency Regulations

■ Mandate higher fuel efficiency norms with penalties for non-compliance
 → encourages OEMs to develop more fuel efficient vehicles

Technology neutral

Demand Side

- Mandate xEVs in government fleets, public transportation to create initial demand for OEMs
- Incentivize sales of xEVs through cash subsidies to consumers

Supply Side

- Provide OEMs and suppliers benefits like accelerated depreciation and tax holidays to encourage local assembly and manufacturing of xEVs
- Phase out existing low import duties on components over ~5 years to encourage localization

Technology Dependent

Research and Development

 Fund R&D programs along with OEMs / component suppliers to develop optimal solutions for India at low cost

Infrastructure Support

- Roll out pilot programs to support hybrid/electric vehicles and test effectiveness
- Make modest investments to build public charging infrastructure to support electric vehicles (especially for buses)

These suggested interventions will be examined by the NBEM and NCEM, which will outline the policy for xEVs in India

Booz & Company